Factor Market Activity and the Inverse Farm Size-Productivity Relationship in Tanzania Ayala Wineman Thomas S. Jayne Department of Agricultural, Food and Resource Economics Michigan State University ## Background - One explanation suggested for the IR is market failures, especially the markets for land, labor, and credit (Lamb 2003; Ali and Deininger 2013; Deininger et al. 2015). - When labor markets do not functioning well, farmers may allocate more labor per hectare on small farms (Sen 1966; Feder 1985). - Thin/missing markets mean: - small farmers can't optimally arrange their land-tolabor factor ratios - large farms that rely on hired labor are paying more per labor day than small farms. ## Background - Some evidence that the IR is linked to factor market performance: - China Excess returns to land were greatest where markets were less active (Benjamin and Brandt 1997). - India The IR has attenuated over ~20 years, attributed to improved labor markets over time (Deininger et al. 2015). - Hypothesis: The inverse relationship will be weaker where factor markets are more active. - We exploit variation over time and space in how active these markets are in Tanzania. #### Data and methods - 3 waves of LSMS Tanzania, 2009-2013. - 8,044 farms in pooled sample, 2,083 cropping households in household-level panel. ### Step 1. Confirm that the IR is evident in Tanzania: #### Data and methods - 3 waves of LSMS Tanzania, 2009-2013. - 8,044 farms in pooled sample, 2,083 farms in household-level panel interviewed in all waves. ### Step 2. Interact farm size with level of local market activity: $Y_{it} = \alpha + \beta [Area_{it}] + \lambda [Area_{it} \times Activity_level_{it}] + \rho [Activity_level_{it}] + X'_{it}\theta + \varphi_t + \delta_i + \varepsilon_{it}$ Interaction between area and local market activity level Activity level measured as % cropping households in district/region engaged in the market. - Land rental/ Land purchase - Agricultural labor - Credit - Oxen rental/ Tractor rental ### Relationship between farm size and crop revenue - Non-parametric polynomial regressions - For visual clarity, samples exclude observations below the 2nd percentile and above the 98th percentile. | | Farm size (ha) | |-----------------------------|----------------| | Mean | 2.1 | | Median | 1.2 | | 95 th percentile | 6.1 | | Area planted ir | n main season (ha) | |-----------------------------|--------------------| | Mean | 1.5 | | Median | 0.9 | | 95 th percentile | 4.4 | #### Household fixed effects regressions | | (1) | (2) | (3) | (4) | (5) | |-------------------------|---------------------|-------------------|--------------|---------|---------| | Dependent variable: | | | | | | | Gross value crop produc | tion per ha (summed | over the year) (1 | 00,000s TSh) | | | | Farm area (ha) | -0.26*** | -0.27*** | -0.27*** | -0.26** | -0.06 | | | (0.003) | (0.003) | (0.004) | (0.021) | (0.244) | | Year fixed effects | Y | Y | Y | Y | Y | |---------------------------------|-----------------|------------|---|---|---| | Household characteristics | | Y | Y | Y | Y | | Community characteristics & w | eather | | Y | Y | Y | | Crops grown (proportion of val | ue or area) | | | Y | | | Inputs applied (included family | labor intensity | <i>'</i>) | | | Y | | Household fixed effects | Y | Y | Y | Y | Y | | | Year | Main season | |--------------|-------|-------------| | Observations | 5,674 | 4,927 | | Households | 2,083 | 1,984 | ### Household fixed effects regressions | | (1) | (2) | (3) | (4) | (5) | |---------------------------|----------------------|-------------------|-------------|---------|---------| | Dependent variable: | | | | | | | Net value crop production | on per ha (summed ov | er the year) (100 | 0,000s TSh) | | | | Area (ha) | -0.22*** | -0.23*** | -0.22*** | -0.22** | -0.08* | | | (0.003) | (0.003) | (0.003) | (0.026) | (0.078) | | Year fixed effects | Y | Y | Y | Y | Y | | |---------------------------------|---------------|-------------------|-----|---|---|--| | Household characteristics | | Y | Y | Y | Y | | | Community characteristics & w | veather | | Y | Y | Y | | | Crops grown (proportion of val | ue or area) | | | Y | | | | Inputs applied (excludes family | labor when co | sts are netted ou | ıt) | | Y | | | Household fixed effects | Y | Y | Y | Y | Y | | | | Year | Main season | |--------------|-------|-------------| | Observations | 5,673 | 4,927 | | Households | 2,083 | 1,984 | # Land market activity among agricultural households across districts, 2007/08 (Source: ASCS) #### % Cropping households that hired in agricultural labor #### % Cropping households that accessed agricultural credit Source: LSMS #### % Cropping households that rented a tractor #### % Cropping households that rented oxen Source: LSMS ### Evidence of labor market imperfections ## Household demographics are determinants of labor applied. | Labor applied to farm, | main season (ln) | |---------------------------|------------------| | Area planted (ha, ln) | 0.49*** | | | (0.000) | | Agricultural wage (ln) | -0.03 | | | (0.290) | | Household size (ln) | 0.41*** | | | (0.000) | | Proportion of HH not of | | | working age | -0.41*** | | | (0.000) | | Other HH characteristics | Y | | Community characteristics | Y | | Year fixed effects | Y | | Household fixed effects | Y | Shadow wages are usually lower than the prevailing market wage. ...But they tend to equal or exceed the market wage among larger farms. Boxes show 25th quartile, median value, 75th quartile. ## Family labor per hectare by farm size, disaggregated by low/high market activity level ## Household fixed effects regressions Dependent variable: Net value of crop production per ha, year (100,000s TSh) | | (1) | (2) | (3) | (4) | (5) | (6) | |---|----------|---------|---------|-----------|----------|---------| | Area planted in main season (ha) | -0.38*** | -0.28** | -1.26** | -0.35*** | -0.66*** | -0.17** | | | (0.00) | (0.02) | (0.04) | (0.00) | (0.00) | (0.04) | | Area * Land rental market activity level | 1.04** | () | () | () | () | () | | J | (0.03) | | | | | | | Area * Land purchase market activity level | (3132) | 0.28 | | | | | | | | (0.64) | | | | | | Area * Ag labor market activity level | | () | 2.64* | | | | | , | | | (0.09) | | | | | Ag labor market activity level | | | -19.67 | | | | | 5 | | | (0.18) | | | | | Area * Ag credit market activity level | | | , | 2.82*** | | | | , | | | | (0.00) | | | | Ag credit market activity level | | | | -30.00*** | | | | · · | | | | (0.00) | | | | Area * Oxen rental market activity level | | | | , | 2.38*** | | | • | | | | | (0.00) | | | Oxen rental market activity level | | | | | -8.89 | | | Ž | | | | | (0.32) | | | Area * Tractor rental market activity level | | | | | | -2.04 | | • | | | | | | (0.27) | | Tractor rental market activity level | | | | | | 5.88 | | , | | | | | | (0.47) | | Household/ Community characteristics/ | | | | | | , | | local weather | Y | Y | Y | Y | Y | Y | | Year fixed effects, Household fixed effects | Y | Y | Y | Y | Y | Y | | Activity level at which slope of area = 0 | 0.365 | | 0.477 | 0.123 | 0.276 | | | % Households beyond this point | 15.3% | | 5.0% | 1.5% | 3.5% | | | Observations | 5,673 | 5,673 | 5,673 | 5,673 | 5,673 | 5,673 | | Households | 2,083 | 2,083 | 2,083 | 2,083 | 2,083 | 2,0834 | ## Household fixed effects regressions Dependent variable: Gross value of crop production per ha, main season (100,000s TSh) | | (1) | (2) | (3) | (4) | (5) | (6) | |---|----------|--------|---------|-----------|----------|----------| | Area planted in main season (ha) | -1.77*** | -1.01 | -6.29** | -1.98*** | -2.99*** | -1.51*** | | 1 | (0.00) | (0.12) | (0.01) | (0.00) | (0.00) | (0.00) | | Area * Land rental market activity level | 4.47* | () | () | () | () | () | | | (0.09) | | | | | | | Area * Land purchase market activity level | () | -1.73 | | | | | | 1 | | (0.67) | | | | | | Area * Ag labor market activity level | | () | 12.81** | | | | | 3 | | | (0.04) | | | | | Ag labor market activity level | | | -48.32 | | | | | 3 | | | (0.10) | | | | | Area * Ag credit market activity level | | | | 12.09*** | | | | , | | | | (0.00) | | | | Ag credit market activity level | | | | -62.30*** | | | | · · | | | | (0.00) | | | | Area * Oxen rental market activity level | | | | , | 12.16*** | | | Ž | | | | | (0.00) | | | Oxen rental market activity level | | | | | -22.45* | | | · | | | | | (0.10) | | | Area * Tractor rental market activity level | | | | | | 4.30 | | | | | | | | (0.19) | | Tractor rental market activity level | | | | | | -25.83 | | | | | | | | (0.15) | | Household/ Community characteristics/ | | | | | | | | local weather | Y | Y | Y | Y | Y | Y | | Crops grown on the farm | | | | | | | | Inputs | | | | | | | | Year fixed effects, Household fixed effects | Y | Y | Y | Y | Y | Y | | Observations | 4,927 | 4,927 | 4,927 | 4,927 | 4,927 | 4,927 | | Households | 1,984 | 1,984 | 1,984 | 1,984 | 1,984 | 1,984 | #### Household fixed effects regressions Dependent variable: Total Factor Productivity (year) | | (1) | (2) | (3) | (4) | (5) | (6) | |--|----------|----------|----------|------------|----------|--------| | Farm area (ha) | -2.41*** | -3.13*** | -5.93*** | -1.97*** | -3.78*** | -0.95* | | | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.06) | | Area * Land rental market activity level | 7.16** | | | | | | | | (0.02) | | | | | | | Area * Land purchase market activity level | | 8.43** | | | | | | | | (0.04) | | | | | | Area * Ag labor market activity level | | | 11.74*** | | | | | | | | (0.01) | | | | | Ag labor market activity level | | | -89.93** | | | | | | | | (0.01) | | | | | Area * Ag credit market activity level | | | | 14.65*** | | | | | | | | (0.00) | | | | Ag credit market activity level | | | | -153.28*** | | | | | | | | (0.00) | | | | Area * Oxen rental market activity level | | | | | 13.47*** | | | | | | | | (0.00) | | | Oxen rental market activity level | | | | | -41.05* | | | | | | | | (0.09) | | | Area * Tractor rental market activity level | | | | | | -14.83 | | | | | | | | (0.27) | | Tractor rental market activity level | | | | | | 41.16 | | | | | | | | (0.40) | | Household/ Community characteristics/ | • 7 | *** | *** | *** | ** | *7 | | local weather | Y | Y | Y | Y | Y | Y | | Crops grown on the farm | | | | | | | | Inputs Year fixed effects, Household fixed effects | Y | Y | Y | Y | Y | Y | | Observations | 5,673 | 5,673 | 5,673 | 5,673 | 5,673 | 5,673 | | Households | 2,083 | 2,083 | 2,083 | 2,083 | 2,083 | 2,083 | ## Preliminary findings - The IR is evident in Tanzania (among the farm sizes captured here). It remains strong in a household fixed effects regression, where we focus on variation in returns to land (or TFP) and farm size over time. - The intensity of the IR is weakest when we control for inputs. - Across farm sizes, labor intensity per hectare is clearly greater for small farms. But this pattern is weaker where land, credit, and labor markets are more active. - The interaction between farm size and measures of factor market activity is often positive and significant. The IR is diminished in the presence of more active markets. ## Preliminary conclusions - The IR is sometimes referenced as a rationale for focusing development efforts on smallholder farmers in pursuit of aggregate efficiency (e.g., Larson et al. 2016). - If the IR is at least partly a reflection of market failures, the policy response should be to improve factor markets. - The patterns observed in this paper suggest that other explanations offered for the IR (e.g., "border" effect) may not be sufficient. ### Linear piecewise (spline) regression The original variable (in our case, plot area): \mathbf{V} Create a set of variables: \mathbf{V}_i , i=1,...,n Corresponding knots (values where the \mathbf{V} is segmented): \mathbf{k}_i , i=1,...,n-1 $$V_1 = \min(\mathbf{V}, k_1)$$ $V_i = \max\{\min(\mathbf{V}, k_i), k_{i-1}\} - k_{i-1} \ i = 2, ..., n-1$ $V_n = \max(\mathbf{V}, k_{n-1}) - k_{n-1}$ The equation is: $$Y_p = \alpha + \beta_1 V_{1p} + \beta_2 V_{2p} + \beta_3 V_{3p} + ... + \beta_n V_{np} + \varepsilon_p$$ Net revenue per area unit $$\beta_2 = \frac{dY}{dv} \text{ if } k_1 \le v < k_2$$ $$\beta_1 = \frac{dY}{dv} \text{ if } v < k_1$$ | Gross value crop production/ ha | | | |---------------------------------|-----------|---------| | | Coef | P-value | | | | | | < 0.5 ha | -30.81*** | 0.00 | | 0.5-1 | 2.45 | 0.40 | | 1-1.5 | -3.56* | 0.05 | | 1.5-2 | 0.07 | 0.94 | | 2-4 | -0.07 | 0.79 | | 4-6 | -0.66*** | 0.01 | | 6-8 | 0.42 | 0.10 | | 8-10 | -0.44** | 0.03 | | ≥ 10 ha | -0.02 | 0.33 | | Constant | 19.13*** | 0.00 | | Observations | 8,044 | | | R-squared | 0.01 | | | *** p<0.01, ** p<0.05, * p<0.1 | | | These coefficients represent the *slope* at this section of the farm-size spectrum. ## Family labor per hectare by farm size, disaggregated by low/high market activity level